Seite 82

- Diese Geraden verlaufen parallel zueinander:
 - g_1 , g_6 und g_8 (Steigung m = 3)
 - g_2 , g_4 und g_7 (Steigung m = -2)
 - g_3 und g_5 (Steigung $m = \frac{1}{2}$)

Seite 83

- 2 Man liest die Steigungen ab und multipliziert sie. Wenn das Produkt -1 ist, verlaufen die Geraden senkrecht zueinander.
 - a) $1 \cdot 1 = -1$

Die beiden Geraden verlaufen nicht senkrecht zueinander.

b) $-2 \cdot 2 + -1$

Die beiden Geraden verlaufen nicht senkrecht zueinander.

c)
$$-\frac{1}{4} \cdot 4 = -1$$

Die beiden Geraden verlaufen senkrecht zueinander.

d)
$$\frac{1}{2} \cdot (-2) = -1$$

Die beiden Geraden verlaufen senkrecht zueinander.

- A g_1 parallel zu g_5 (Steigung m = $\frac{1}{2}$)
 - g_2 parallel zu g_4 (Steigung m = -4)
 - g_3 parallel zu g_6 (Steigung m = $\frac{2}{3}$)
- **B** a) h: y = -2x + 3 b) h: $y = -\frac{1}{3}x + 2$

 - c) h: y = 4x 4 d) h: $y = \frac{3}{2}x + 5$

Seite 83, rechts

Die Geraden g₂ und g₅ verlaufen parallel zueinander, denn beide haben die Steigung m = $-\frac{4}{3}$. Die Gerade g, verläuft senkrecht zu g, bzw. zu $g_{_{\rm 5}}$, denn für die Steigungen gilt:

$$\frac{3}{4} \cdot \left(-\frac{4}{3}\right) = -1$$

Die Geraden g, und g, verlaufen parallel zueinander, denn beide haben die Steigung m = $\frac{2}{5}$. Die Gerade g₄ verläuft senkrecht zu g₃ bzw. zu g_{6'} denn für die Steigungen gilt:

$$-\frac{5}{2} \cdot \frac{2}{5} = -1$$

Seite 92

14 Die Geraden A und B liegen parallel zueinander. Die Geraden C und D verlaufen senkrecht zueinander.